Stellar Obliquity Distribution of Exoplanetary Systems

Application to Simulated Data

Stellar obliquity distribution can be inferred **purely** from sky-projected stellar obliquities.

Jiayin Dong,^{1,2} Dan Foreman-Mackey¹

¹CCA, Flatiron Institute ²Flatiron Research Fellow

arxiv.org/abs/2305.14220

Ogithub.com/jiayindong/obliquity

Physical Properties $\{\psi, \theta\}$

A Hierarchical Bayesian Framework for Inferring the Stellar Obliquity Distribution

Application to Observations

The majority of close-in exoplanetary planets (sample from Albrecht+22 review) are aligned. Misaligned systems follow a nearly isotropic distribution.

Where are the Polar Planets?

Polar planets are found in the subsample of systems with i_{\star} measurements (from Albrecht+21), but this subsample **could be biased** by the i_{\star} detection requirement. E.g., gravity darkening prefers to find polar planets.

